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Abstract

We consider the occupation time of a two-type particle system in the real line, where a
particle of type ¢ € {1,2} moves following a symmetric «;-stable Lévy process and changes its
type at exponentially distributed holding times. We prove that the properly normalized time-
rescaled occupation time fluctuations of the system converge to a process involving a fractional
Brownian motion with Hurst parameter H = 1 — 1/2 max{«y, as}. This extends previous work
of [3] to a multitype scenario.

Key words: Multitype particle system, occupation time fluctuations, fractional Brownian motion, weak
convergence
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1 Background and limit theorem

In some stochastic particle systems in Euclidean spaces involving motions according to symmetric
a-stable Lévy processes with two or more values of «, it has been of interest to investigate which
one of the values plays a determining role for certain behaviors of the systems. In multitype critical
branching particle systems and superprocesses, the persistence (convergence towards a non-trivial
equilibrium state), and the asymptotics of solutions of related systems of non-linear partial pseudo-
differential equations, the smallest of the a’s plays the determining role [5], [7], [10]. In existence
of self-intersection local time of a high-density limit of a system of particles with motion mutating
between two values of «, the smallest one also has the dominant role [6]. Notice that a smaller value
of o represents a larger “mobility” of the motion, since at any fixed time the position of a particle has
finite moments of order only strictly smaller than « (if @ < 2). In this paper we consider a different
type of question regarding a two-type particle system. The system consists of particles moving in R
following symmetric a-stable Lévy processes with two different values, 0 < a1 < as < 2, switching
between them at exponentially distributed holding times independently of each other, and starting
from a random Poisson configuration. A particle is called of type ¢ when it moves according to
;1 = 1,2. We study the large time asymptotics of rescaled occupation time fluctuations of the
system. This problem has been investigated in [3] for the system with a single a, with and without
critical branching, in the case when the limit process has long memory, which is also the phenomenon
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that interests us here. It turns out that it is the largest «, i.e., the less mobile of the motions, that
has the dominant role. This is not unexpected by the following heuristic argument. In the single
type model a larger « requires a larger norming because the less mobile particles spend more time
in any given bounded set, and the corresponding norming is too strong for the occupation time of
the more mobile particles (see [3]). However, the analysis of the system with two a’s poses new
technical difficulties because, whereas in the case of a single a the particle motion is self-similar,
which plays a crucial role in the proofs, with two «’s there are two different self-similarities that
are constantly interwound. We consider a simple situation as a test case, namely, 1 < a1 < a9, and
holding times between mutations so that the motion switching between types is stationary; this
simplifies the analysis. However, on the basis of the result obtained in this case, it is natural to
surmise that analogous results (i.e., the largest oz dominates) will hold in more general multitype
models for this type of limits, including non-stationary models and models with critical multitype
branching.

We suppose that the holding times for mutations of particles of type i € {1,2} are exponentially
distributed with parameter V; > 0. We denote by A,, the infinitesimal generator of the symmetric
a;-stable process in R, i = 1, 2. The mean matrix M = (m;;); j—1,2 for this special form of multitype
branching is given by M = (1 — 0;5); j=1,2, where J;; is Kronecker’s delta.

The population of particles is modelled by measures 1 € M (&), where My (E) denotes the space
of counting measures on the product space € = R x {1,2}. The first component of (z,i) € £ stands
for the position and the second one for the type of a particle. We denote by N = {N;,t > 0}
the empirical measure process of the system, i.e., Ny(A) is the number of particles in the Borel set
A C £ at time t. We assume that the initial population Ny is a Poisson random measure on £ such
that EN(0) = A := y1(\ X 1) + 72(X x d2), where

Va Vi
- gl , 1.1
i+ Vs py i+ Vs, (L.1)

and \ stands for Lebesgue measure on R. The choice (1.1) for 71 and 2 makes the type process
stationary [5]. The rescaled occupation time process Ly = {Lp(t),t > 0} of N is given by

il

Tt
Lp(t) = ; N(s)ds,

and the fluctuation process X7 = {X7(t),t > 0} of Lr is defined by

1

Xr(t) = Fr

Tt
/ (Ns — E N;) ds, (1.2)
0
where Fp is a norming. We use test functions ®(z,¢) in S(€) and ®(z,4,t) in S(€ x R), where
S(€) (respectively, S(€ x R)) is the space of measurable functions ® : £ — R such that z — ®(z,1)
belongs to S(R) (respectively, (z,t) — ®(z,14,t) belongs to S(R?)), i = 1,2, and S(R?) denotes the
space of rapidly decreasing C* functions on R?. Due to our assumption on A and (1.1), EN, = A
for all s > 0.
Notice that for ® € S(E),

2 .
(r0).0) = [ () Xr(t.di)) = Y [ 003} t.da), (1.3)
=1

where Xq(f) (t,dx) := 6;; Xr(t,d(z,7)), i =1,2,t > 0, are signed Radon measures on R. Hence (1.3)
can be written as

(Xr(t), @) = (X)), X (1), (@(1), 2(,2))) (1.4)
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where (, ) on the right-hand side denotes the duality on (S'(R))? x S(R)2.
Our goal is to find a suitable norming Fr such that Xp, or equivalently the vector process

(X;l), ;2)), converges in distribution as T — oo to a non-degenerate limit, and to identify the
limit process. We will prove the following result.

Theorem Let 1 < o < as, and Fp = T*1/292 Then, for any 7 > 0, (Xél),Xj(?)) = (XM, x@)
in the space of continuous functions C([0,7],(S'(R))?) as T — oo, where X = (X, X@)) js g
centered Gaussian process with covariance functional given by
Vi I'(2—h) ho| .h h
A A t — |t - 1.5
VY1+VY27TOZQ}L(]’L—1)< ’902>< 51/)2>( +s ’ S‘ )7 ( )

d = (p1,92), ¥ = (P1,92) € (S(R))?,

Cov((X(s), @), (X (1), V)

where h =2 —1/ag € (1,3/2].

Remark 1. The limit process X = (X, X(@)) is given by X(1) = 0, and

Vi T@2-h) \Y?
X® = L A 1.
<V1+V27T042h(h—1) & (16)

where & = (£(t))¢>0 is fractional Brownian motion with Husrt parameter H = h/2.
2. Although the limit process X is measure-valued, we have made use of the advantages of the
topology of &'(R), which is commonly done in this type of problems.

2 Proof

In order to prove the theorem we extend the space-time method introduced in [2] and employed in
[3] to a two-type particle setting.
We start by recalling some facts. Consider the Markov generator A defined by

2
AD(z,i) = Ay, P(2,1) + V; Z (mij — 0i5) ®(x,7), (x,i) € E, @(-,4) € Dom(Ay,), (2.1)

and denote by {(Wy,m:), t > 0} the Markov process on £ with generator A. The type component
n = {m,t > 0} follows a Markov chain with Q-matrix (V;(m;; — d0ij))1<i j<2, and the position
component W = {Wy,t > 0} follows an «;-stable motion as long as 7 is in state i. We write {U(t),
t > 0} for the semigroup in L?(€, A) with generator A.

Let P denote the distribution of the type chain 7 starting in 4, i = 1,2. We write L;(¢,n) for
the amount of time that 1 spends in ¢ during the time interval (0,¢], ¢ > 0. We denote by {Jt(w’k),
t > 0} the transition kernels of the process {(W,m:), t > 0} starting in (z,k) € €. Let {¢",
t > 0} denote the transition densities of the symmetric «;-stable process in R, i = 1,2. We recall
the following result from [9], where Dy .)({1,2}) is the Skorohod space of right-continuous with
left-limits functions h : [0, 00) — {1, 2}.

Lemma The transition kernels Jt(w’k), t > 0, are given by

(z,k) . . o « n
JO(O x {i}) = /D[o,oo)({lz}) 1{770:k,17t:i}(77)/c <qLi(m) *qu(t,n)> (z,2)dz P)(dn), (2.2)

i,k e {l,2}, z e R, C e B(R).



Moreover, Jt(z’k) < A for allt >0 and (z,k) € €, and (th(m’k)/dA)(z,i) = Ji((x, k), (z,1)), where

TG, ) = [ (452 * €520 ) (& D)Ly, ey (VPR A). (2.3)
D[O,oo) ({172})

Notice that Ji((x, k), (z,7)) depends on z and z only through x — z.

Due to (1.4), we will mostly use the process Xr rather than its vector counterpart (X}l) , :X}z)).
We put 7 = 1 (without loss of generality), and we define the related random variables Xp for
each T'> 1 by

B 1
<XT, q>> - /0 (Xr(5), (-, 5))ds, @€ S(ExR), (2.4)

(which determines X7 as an S'(£ x R)-valued random variable, see [2]). Our first task is to show
that . .
Xr = X in S(ExR) as T — oo, (2.5)

where X is given by ,
(X.0)= / (X(s), () ds, ® € S(E x R). (2.6)
0

Putting (1.2) into (2.4) and changing the order of integration, we get
5 T 1 1
(%r,@) = — [/ (Npg, W(-, ) ds — <A/ (-, s) ds>] , (2.7)
EFr LJo 0

U(z,s) = /1 O(z,t)dt, z € €. (2.8)

where

Since the initial configuration is Poisson with mean A, we obtain from (2.7) the Laplace functional

Eexp{7<)~(T,<I>>} - exp{/S/OT\I'T(x,i,s)dsdA(x,i)}
-eXp{/5 []Eexp <_ /OT <N§$vi),\pT(-,s)>ds> = 1] dA(a:,i)}, (2.9)

1 S
Ur(z5) = ¥ (z, T> , z€E, (2.10)

where

and N, s(”“') denotes the empirical measure at time s of the particle system started from one initial
particle in (x,7). For any nonnegative ¥ € S(€ x R) we define

t
wi(x,r,t) :Eexp{—/ <N§m’i),\ll(-7r+s)> ds }, (x,i) €&, r,t>0. (2.11)
0

Hence 0 < w; < 1. We denote by gt(“') the position at time ¢ > 0 of a one-dimensional symmetric
a;-stable process starting in x € R. By a renewal argument we obtain

t .
wi(z,r,t) = e_V"tIEexp {— / \Il(ggm”), i,s+T) ds}
0



t .
(@D G r 4 u) du}

t—s (244)
ol [l
0

t—s (w,i
+piolE exp{—/ <N§S )’2),\P(-,r+s+u)> du}] ds
0

t
= e V'Eexp {— / WD) is+r) ds}
0

t s
+ ‘/;/ e VisEexp {—/ W(ED) i e+ u) du}
0 0

. [pi1w1(§§x7i), r+s,t—s)+ pigwg(ﬁgx’i),r +s,t— s)} ds,

where p;; = 1 — ;5. (Notice at this point that more general p;;’s can be handled too). For ¥ as
above and r > 0, let

t
hi(z,r,t) = Eexp {—/ (E@D g s+ 1) ds} ,
0
and for r,o > 0, let

ki(xa r, U)
= [Eexp {— / (@) i r 4 u) dU} [pi1w1(£§x’i), r4 0,t — o) + piwa (68D r 4 ot — U)} ,
0

(the dependence on t in the right-hand side is not relevant). Then, after an obvious change of
variables we get

t
wi(z,mt) = e Vithi(z, 7 t) + V}e_v"t/ e S ki(xz, 7t — s) ds.
0

Using the Feynman-Kac formula as in [3] we deduce that

0 0
PYACZEE = Aa* — Vv ) .a i\&Ly T ),
8th(wrt) ( Z+8r (wzr))h(xrt)
hi(ﬂl',’l”, 0) =1
and

0 0 .
a—gl{:i(m,r, t) = (Aai + P V(x,1, T)) ki(z,r,t),
ki(z,7,0) = pawi(z,r,t) + pows(z,r,t),
and therefore,
&wi(fﬂ, r, t)

—Viefvithi(a:, r.t) + evitgthi(x, r,t)

t t
—VZ-Qe_Vit/ eV ky(x,r,t — 5)ds + Viki(z,7,0) + Vie_vit/ e‘/isgtki(x, rt—s)ds
0 0



= —Vie Vithi(x,r,t) + e Vit (Aaz + g — \Il(x,z,r)> hi(z,r,t)
r

t
VZ-ZG_V”/ eViki(z, v, t — 5)ds + Viky(x,7,0)
0

t
+Vie_vit/ eVis (Aai + g - W(m,i,r)) ki(x,r,t —s)ds
0 T

= hki(.’r, T, ()) — hwi(;l:, r, t) + <Aai + — — \I/(;(;, i, 7)) wi(a:, r, t)
()T
0

= (Aal + E - \Il(xyi7r)> ’11)7;(.’1/',7", t) + ‘/i[pilwl(wﬂa: t) +pi2w2(xa r, t) - U]Z'(.’B,’l”, t)]

Let
v(x,i,rt) =1—w;(x,rt). (2.12)

Then v(x,i,r,t) = vy(z,i,r,t) satisfies the equation

Sotint) = (Bu b o ) ol )+ Blo, i1 = vleiir,t)

—Vilv(z,i,7r,t) — piv(x, 1,7, t) — piov(x, 2,7, 1)],
v(xz,i,7,0) = 0.

In our case, the infinitesimal generator A of {U(t), ¢t > 0}, which is given by (2.1), has the form
Af(x,i) = Dq, f(z,1) + Vi(f(z,§) = f(2,9)), (2,i) €E, [ € Dom(A),

where j # ¢. Then, from the previous equation

o(z,irt) = /O(U(t—s)[\lf(-,r+t—s) (1 =+t — s.5))]) (. ds (2.13)

IA

t
/ (U(t— s) \Il(-,r+t—s)) (,1)ds. (2.14)
0
Using the invariance of A for U(t) (due to our choice of 71, v2), we obtain
t
/ v(z,i,r,t))dA(x, i) = / / V(z,i,r+t—s)(1 —v(x,i,r+t—s,s))dA(z,i)ds. (2.15)
& 0 JE
Now we are prepared to prove convergence of the Laplace functional (2.9):
lim Eexp{—<XT,<I>>} :Eexp{—<X,¢>}, (2.16)
T—o0
where X is given by (2.6) and (1.5).

Analogously to [3], in order to prove (2.5) it suffices take ® > 0. Using (2.11), (2.12) and (2.15),
it follows from (2.9) that

e {~ (1.8}
_ exp{/T/\I/T(x,i,s) dA(z, 1) ds}exp{—/gv\yT(x,i,O,T) dA(a:,i)}

_ exp{/ /xpT 2,0, T — s)vw, (2,4, T — )dA(x,i)ds}

= exp(11l1) exp(y2l2), (2.17)



where
T
b= [ [T - e (e1,T - s5) dods, (2.18)
o JR
T
b= [ [T - su 2T - s deds (2.19)
0o JR

We may assume without loss of generality (as in [3]) that ® € S(€ x R) is of the form ®(z,i,t) =
o(x,4)(t), where ¢ € S(€) and ¢ € S(R) are nonnegative functions. We put

1
t
0= [ 6)ds and xrl) = x (T) | (2.20)
t
Using (2.13) we obtain for the integral (2.19)
T
I, = / / Urp(x,2,T — s)vy, (2,2, T — s,s)deds
o Jr

T S
- / // (2,27~ ) (Uls —u)[r (T — ) (1~ 09, (T — w,w)]) (2,2) dudeds
0 RJO

= Iy — I,
where
1 T s
Iy = F/ // U(z,2,1—s/T) (U(u)\IIT(-,T—s+u)> (z,2) dudz ds, (2.21)
T JOo RJO
Iy (2.22)

_ —;T/OT/R/OS\I!(QC,Zl—s/T) (U~ wI(@r (T —w) vy (T~ w,w)]) (2,2) du i ds.

For the integral Io; in (2.21), after the change of variables s — T — s and using (2.20), we obtain
1 T T—s
b= g [ e (e x4 ) @2 dras
T J0 R LJO

_ Fl%/OT /ST [/R ol,2xr(s) (U(u— 9)p() xr(w)) (@.2) dudx] ds.

Let {5}, t > 0} denote the «;-stable semigroup, with generator A,,. Using the variation of
parameters formula for perturbed semigroups (see e.g. [4], Chapter III, Corollary 1.7), it follows
that

U(t)®(x,i) = Sy ®(x,4) + Vi/o SY(t—s)[U(s)®(z,7) — U(s)®(x,1)] ds, (2.23)
Hence,
Iy = J1 + Ja, (2.24)
where
1 T T
no= g [ et i et 2y dude ds (225)

1 T T pu—s
Jy = 2V2/ / / /gp(w,Q)SSZS_TK(T,a:) dx xr(s)xr(u)drduds, (2.26)
FrmJo Js Jo Jr
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and
K(r,x) :=U(r)e(x,1) = U(r)p(x, 2). (2.27)

Let us write 3(z,4) for the Fourier transform of ¢(-,i), i = 1,2, and recall that Fp = T1~1/202,
Applying Plancherel’s theorem and the fact that the Fourier transform of the a-stable semigroup
S¢p is e 11" 3(2), we obtain for J; from (2.25)

_ 2)] (u—s)|2|*2
Ji F2 27r/ / /\gp z, dz xr(u)xr(s) duds

N F22 // /‘8022 D™ dz x (u)xr (sT) duds
™

- F227T/ / /VSDZ 2)|%e~ T dz x(u)x(s) du ds

T2 1/ 1 —|y|o2 1/a —1/a 9 1/a
= 2 / / / Y “P Yy~ 2( ) 2’2)| (U— S) ZdZX(U)X(S) dUdS,

T

where in the second equality we made the substitution s +— sT', in the third one u — Tu, and in
the fourth one, z = [T'(u — s)]~/*2y. Therefore,

1 . 1,1
lim J; = 27T|$(0,2)\2/Re|y| 2aly/o / (u—s)"2x(s)x(u) ds du

T—o00

_ 1 u
= |@(072)I27M/0 /0 [uh+vh+(u7v)h} dv du, (2.28)

where h = 2 — 1/ag, the limit being finite because 1 < . For J; we have, using again Plancherel’s
theorem,

Jy = 27r F2 2/ / / [/ 6 (u—s—T)|Z|a2WdZ:| XT(S)XT(U) dr duds
3 u—s -
_ ClT / / / [ / Je~Tlu=s=nlz12 B (T ) dz} x(s)x(u) dr du ds
3—1/«
- ClT 2/ / / [/ — 5 — )T Heepl/azy 9)e~ 2

I?(T‘T, [(u—s—r)T| 1ezy) dy] (u—s — )2\ (s)x(u) dr du ds,

where in the second equality we made the changes of variables s +— sT,u — uT,r — rT, and in the
last equality we made the substitution z = [(u — s — r)T]~%/*2y, and C; = Vy/27.
Denoting D = Dy )({1,2}), from the lemma we obtain

Ur)e(z,1) = /R o(2,1) /D Vo=t =13 () 71 () * Aoy (2 — ) dzPY (d)

[ 02 [ a0 5 * 22z ) 2Pl

Hence, taking Fourier transform,

—

U(r)e(0,1) = /D1{no=1,nr=1}(77)95(971)6121(“,7)*qgﬁ(r,n)(@Pﬁ(dn)

+ /D 1{770=1,m=2}(77) o(0, Q)Qgi(m) * qu(rﬁl) (H)P{?<d77)



[ Lty ) G0, D b iy
[ Lty ) B0, 2)e LI L0 Piay), (2.20)
D

In the same way,

o —

00002 = [ Lm0 BOGE) % 45 (O P )
+ [ Vpgman =21 () 2Oy + 53y (OPI)
_ /D Lzt () B(6, 1)e™ G = Larmlol®2 pa gy
+ /D Vnozm—23 (1) B(8, 2)e~ LM o=Lalrml0*2 pi(gpy - (2.30)
Then, using similar changes of variables as before,

Jo = A1 + Ay + Ag + Ay,

where
3— 1/042
4 = G / / || Lot s = v vy b et
PP TS - [~ LG T )~ 5 — r)-ev/oap-eafespyjen )

- exp {~La(rT,m)(u — 5 — 1) 1T yjo2} dy ]

Lot mr=1y PN (u — s — 1) 7192y (s)x(u) dr du ds,
3— 1/042
A = S / / / U (u—s =)~y 1) exp{—|y|*)
-sﬂ((u — s = r)THearYoay 9) exp { - Ly (1T, ) (u — s — )T /2T 02yl |

- exp {~La(rT,m)(u — 5 — 1) 1Tyl } dy ]

T no=1,mr=23 P (dn)(u — s — P2y (8)x (u) dr du ds,

3—1/az
e A A A O e e e e

Bl ry YTV )y {~L0T (= s = rymenfoepen/ozjyer |

exp {~LalrTa)(u— s = 1) T gy |

.1{770:2»771-T:1}P2n(d77) (u—s— T)il/QQX(S)X(u) dr du ds,



T3 1/an
M= A / / / [/ ((u— s —r)"t/o2T= o2y 1) exp{—[y|*2}

go((u —5— r)*l/QQTfl/O‘Qy, 2) exp {—Ll(rT, n)(u—s— r)fal/O‘QT*“l/O‘Q\y]al}
- exp {~La(rT,m)(w — 5 — 1) 1T 1yjo2} dy ]

'1{ﬂ0:2,an:2}P277(d77)(u —5— T)_I/OQX(S)X(U) dr duds.

By the ergodic theorem (L;(t,n)/t — v; a.s. as t — 00, j # i), and the hypothesis 1 < a1 < ag, we
obtain

lim A1
T—o0

3— l/ag
i G L ot s =y, 1y expf-of®)
—00 R

. @((u —5— T)_I/QQT_I/QQy, 1) exp {_ (Ll(rj]:’n)> ,,«T(u — 5 — T)—al/QQT—al/a2’y|O&1}
T

- exp {_ <L2(:§’ ")> rT(u— 5 — r)1T1|y|0‘2} dy]

1{770 1Lnr= l}P (dn)(u—s—1)" 1/az x(8)x(u) drduds

_Thm Cl/ / / / [/ u—S—?‘) 1/agp— 1/oz2y 1) exp{ ‘y’o&}

Li(rT,
-Texp{ < 1 T’T 77)) Tl al/ag( s_r)—a1/a2|y|a1}
T

exp {- <L2(§">) F (s — )yl dy}

Lno=tmr=13 P (dn)(u — s — Y2y (s)x(u) dr du ds
=0 (2.31)

where we used the definition of Fr, Lebesgue’s theorem, and |¢(0,1)| < co. In a similar fashion it
is verified that

T—o0 T—o0 T—o0

In this way we have proved that I, given by (2.21), converges at T' — oo to the integrated
covariance function of the fractional Brownian motion given in (2.28).

We will prove that the term Iz in (2.22) tends to 0 as T — oo. Using (2.13), (2.23), and the
fact that x and ¢ are bounded, we obtain from (2.23)

02 T prs ru
I < szi/o /0 /0 /Rgo(x,Z) [U(s —u) (pU(r)9)] (z,2) dzdr duds,

= Bl +B27

B, = g;/ /// (2,2)52, [pU(r)¢)(x, 2) dz dr du ds,
e GLL L e

522, (VOEUE)RE. 1) = WO (.2)) dedidr duds,

[\
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where (5 is a positive constant. It is straightforward to see, similarly as we did in the case of Js,
that limp_,. By = limp_,,c Bs = 0. As a matter of fact, using the Plancherel theorem we obtain

B < //// (2,2)e~ =W [T (0] (2, 2) dz dr duds
= 02T3//// (z,2)e~ T2 [T (T (2, 2) dz dr du ds

C2T3 1/az R T y X
- T B / / / / Bz, 2)e TETR UGT) ] (2, 2) dz (s — w) 7 /*2dr duds.
T 0o Jo JO R

Using the expression for U/(r)\cp(z, 2) given by (2.30), we get limp_,o, B; = 0 in the same way as we
obtained (2.31).

Finally, to deal with the term I; given by (2.18) we use 1 < ay < ag, and limp_, T2_1/0‘1/F% =
0. Proceeding as in the case of Is, we conclude that limy_,. 1 = 0.

The convergence of the Laplace functionals (2.16) is established.

We now show tightness for the real processes {(Xr, ®), T' > 1} for any ® € S(£), which implies
tightness of {Xp, T > 1} by the theorem of Mitoma [11]. Let s <t and ® € §(£). We have

E(X7(t),®) — (X7(s),®))? = //Cov (Nry, ®), (N7, ®)) du dv

= 2}7%/3 / Cov((Nry, ®), (Npy, ®))) dudv.  (2.33)

Using [8] and the fact that A is invariant for the semigroup U(t), we obtain

Cov({Npy, ®), (Nry, ®))
= (A, U(Tw)[®@U(T(v—u))®])

_ /gcb(a:,i)(U(T(v — w)®)(z, i) dA(, i)

- / B () / B (22 ) 1oy (), (2, 1)) dA (2, J) dA(z, )
£ £

= o [ el ( [ 1>,<z,j>>dA<z,j>> dx
+a [ 2w ( [ 2 (o2 (Z,mdA(z,j)) dr.

The lemma and another use of Plancherel’s theorem give

Cov((Nry, ®), (N7y, ®))

1 S a1 — v—u 2|«
_ L [% /R /D Bz, 1) Pe P TODE L@y o g

27

+71/R/D<T>(z, 1)Me*L1(T(v7u)Ji)\Z|a17L2(T(v7u),77)|z|a21{770 Loy = _oy P(dn) dz
+’)’2/R/D5(272)(/M€—L1(T(v—u)ﬂ7)Z|D‘1—L2(T(v—u)777)|Z|a21{770 2 (o) = 1y P(dn) dz
+72/R/D@(272)!26_’:1@(”_“)’")Z|a1_L2(T(”_“)’")Z|a21{n0—2,nT(u_u)—2}P"(dn)dz L (2.34)
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Since 2|t > |z|*? on {z : |z| < 1} and |z|*" < |2]*? on {z : |z| > 1}, and obviously Li(t,n) +
Lo(t,n) = t, we have

e~ L1(T(v=u),n)|2|*1 = Lo (T (v—u),n)|2*2

eI (T —mlel* ~LaTr—lel*2 | o=l (T om0 el ~La(To—wmlel®2y
< e TR gy e T sy
< efT(vfu)M“l +67T(v7u)|z|°‘2. (235)
Substituting (2.35) into (2.34), we obtain
Cov({Npy, ®), (Np,, ®)) (2.36)

< C/ <f> (z,1)] + |®(2,2)])(e —T(v—u)lz|* +8*T(U7u)\z|°‘2)d’z’

where C' is a constant. Inserting (2.36) into (2.33), it follows, analogously as in Section 3.1 of [3],

that
(t . 8)2—1/011 (t . 8)2—1/042
Va2~ 1jay) | 2 1jas )

E(<XT(t)7 (I)> T <XT(3)7 @))2 B C((I)) <

for some constant C'(®). According to [1], this finishes the proof of tightness.
Finally, we recall from [2] that convergence of X7 in S'(€ x R) as T' — oo and tightness of
{X7}7r>1, implies the desired convergence in C([0, 1], (S'(R))?). O
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